'

4 ;" 2009-0655 C

Integration Strategies for Computational
Science & Engineering Software

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/
Department of Optimization & Uncertainty Estimation
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Second International Workshop on Software
Engineering for Computational Science and
Engineering
May 23, 2009

Sandia
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, National .
Page 1 for the United States Department of Energy under contract DE-AC04-94AL85000. Laboratories

% Software Integration in the CS&E Environment

* Need to integrate a large amount of CS&E software:
— Meshing
— Discretizations
— Solvers
— Adaptivity
— Analysis capabilities
— Visualization

 Each CS&E discipline is highly specialized and requires PhD-level expertise

» The set of algorithms and software is too large for any single organization to
produce

» Set of software is too large to be developed under a single blanket of Full
Continuous Integration (CI)

=> Software Engineering and Software Integration are key bottlenecks for
CS&E to have the fullest impact! @ Sandia

National

Page 2 Laboratories

| '
}- CS&E Environment at Sandia National Labs for Trilinos

SIERRA (=) Alegra (APP) Charon TPL: Third Party Lib
Largest and most -1 (APP) Provides
complex functionality to
N K multiple APPs
_ Trilinos (TPL) | ___ Xyce « The “Supplier” to
Titan/VTK |___.-----" S S— (APP) the APP
(APP) e \
; : APP: Application
'(A"Al\lig; Tran;cl)ar;to ™ + Delivers end user
functionality

e The “Customer” of

o Sophisticated CS&E applications
PhISH PP the TPL

— Discretized PDEs (SIERRA, Alegra, Aleph, Charon)
— Circuit network models (Xyce)
— Other types of calculations (Titian/VTK, Tramonto)

* (Massively) parallel MPI1 (Gordon Bell Winners)

» Almost entirely developed by non-software people

» Wide range of research to production (i.e. from Aleph to SIERRA)
rl'| National

Laboratories
Page 3

=

Standard Software Integration Approaches

« Continuous Integration (ClI)

— Code is expected to build and the tests are expected to run
— Maintained through synchronous or asynchronous ClI

— Requires high levels of cooperation and communication

— Requires code to (re)build fast and tests to run fast

» Customer/Supplier Relationships
— Combined code too large to build under single CI system
— Organizations can not cooperate close enough
— Protect APP for future TPL updates through development of Acceptance Test Suite
— May not work as well for may CS&E codes
— Not as well suited for closer collaborations

APP

N
\
develops \

\
\
\

APP (Customer)
Developers

Page 4

Helps to create
and maintain

APP/TPL s TPL L.
Acceptance Test - |
Suite :
v |
« Helps to create \~\ E
* Runs as a regression s -
test suite
TPL (Supplier)
Developers

develops

@

Sandia
National
Laboratories

7
Mallenges to Software Integration in CS&E Environments

o CS&E is a mix of research and production work
— How can you mix research and production software?
« CS&E practitioners have a wide mix of backgrounds in physics, math,
computer science, engineering, etc.
— How to these people communicate together and integrate their technologies?
 CS&E involved very complex, very specialized algorithms
— Requires PhD in area to develop best algorithms/software
— How to integrate very different complex algorithms software?
» Great variability in knowledge and interests in basic software development
knowledge and skills
— How can you produce high quality trusted software with unskilled programmers?
» Close collaboration between different disciplines needed to solve the hard
problems
— How can different practitioners work together through their software?
o CS&E heavily relies on fast floating-point computations
— Output from program varies between platforms and even with different compiler
options!
— How to you keep tests working on different platforms?
o CS&E involves complex nonlinear models

— Examples: ill conditioning, multiple solutions, bifurcations, non-convexities ...
="J |aboratories

Page 5

7 >
%' Special Challenges with CS&E Software

« CS&E heavily relies on fast floating-point computations
— Output from program varies between platforms and even with different compiler
options!
— How to you keep tests working on different platforms?
e CS&E involves complex nonlinear models
— Examples: ill conditioning, multiple solutions, bifurcations, non-convexities ...

These issues conspire together to make testing and maintaining CS&E software
on multiple platforms very difficult!

Consequences:

* A new test status: The diffing test!
— Code runs to completion but some error tolerance was exceeded
— Many CS&E practitioners convince themselves that a “diff” is not as bad as a “fail”!

» Changes to a numerical algorithm that improve performance in every measure
can cause numerous tests to ‘diff’ or even ‘fail’!

» Upgrades of a TPL can break an APP even if no real defects have been

introduced!
@ Sandia
National
Laboratories

Page 6

}. APP + TPL Release with Punctuated TPL Upgrades

ToL X 1elee® .
Xy TPL X+1 release R
ﬂ?\’(\o‘(\ .
TPL Head o@

v

APP Y+1 & TPL X+1
release

APP Head /

Testing: APP Dev + TPL X APP Dev Testing:
transition APP Dev + TPL X+1
to TPL X+1

Transition from TPL X to TPL X+1 can be difficult and open ended
Large batches of changes between integrations

Greater risk of experiencing real regressions

Upgrades may need to be completely abandoned in extreme cases
However, this is satisfactory for many APP+TPL efforts!

Sandia
National
Laboratories

Page 7

V
}' APP + TPL Release and Dev Daily Integration

Q ;
i APP (SIERRA) |3| SE
i Dev Z| APP Dev + TPL Dev
R —_— ! ! Co-Developers
i | Y | v i_
SN L TP TPL e

APP (SIERRA) (Trilinos) > (Trilinos) |

Dev Developers Release Dev N -

TPL (Trilinos) Dev

. . Developers
» APP (SIERRA) Dev Developers only build/test against TPL Release

» TPL (Trilinos) Dev Developers work independent from APP
» Keep APP Dev and TPL Dev up to date! => Supported by TPL backward Compatibility!
» Use of staggered releases of TPL and APP

« APP + TPL Dev Developers drive new capabilities

« Difficult for APP to depend too much on TPL

» Does not support tighter levels of integration and collaboration

« APP developers can break “New” a lot when refactoring

- However, this is satisfactory for many APP+TPL efforts! @ Sania

National

Page 8 Laboratories

V
}' APP + TPL Release and Dev Daily Integration

TPL X re1eas

v

TPL X+1 release

v

TPL Head (Dev)

v

SIERRA + Trilinos Integration! APP Y+1 & TPL X1

Charon + Trilinos Integration! release
Alegra + Trilinos Integration! >
Xyce + Trilinos Integration!
APP Head (Dev) y J
Testing: APP Dev + TPL Dev Testing: Testing: APP Dev + TPL Dev
Testing: APP Dev + TPL X APP + Testing: APP Dev + TPL X+1
Tri Dev
Tri X
Tri X+1

» All changes are tested in small batches
» Low probability of experiencing a regression

« Extra computing resources to test against 2 (3) versions of TPL
« Some difficulty flagging regressions of APP + TPL Dev

« APP developers often break APP + TPL Dev when refactoring
« Difficult for APP to rely on TPL too much

« Hard to verify TPL for APP before APP release

* However, this is satisfactory for many APP+TPL efforts! s
Page9 — T

* APP + TPL Almost Continuous Integration: Principles

» Regular TPL developers only build and run TPL pre-checkin test suite.

* Regular APP developers should only check out code that has already built
and passed their pre-checkin APP test suite.

» Code that builds and passes the pre-checkin test suite is safe to check in.

e Co-development of the APP + TPL needs to be productive and not
discourage frequent checkins (at least to direct collaborators).

* Regular APP developers should be able to easily build and test “New” APP
+ TPL Dev code to avoid breaking it before checkin.

Sandia
National
Laboratories

Page 10

% APP + TPL Almost Continuous Integration: Overview

Q) .
Main APP < Q

)\ > VC Repository
Dev <
L (Dev))
APP Dev P N
Nightly Testing APP-owned TPL < a APP D
APP Dev + TPL Dev- > VC Repositor N o
p y Developers
APP Dev + TPL Dev (Dev-) >
_ 4
_ 4
. APP Pre-Checkin N
Test Suite <
APP Regression Q
Test Suite *
APP Owned
__ APP Dev+ TPLDev .______
Co-Developers
TPL Owned i
e)
> Main TPL <t
VC Repository ,
> Dev <
Q \ (Dev) J \)\
R TPL Pre-Checkin < TPL Dev
Test Suite < Developers
TPL Dev R TPL Regression Sandi
Nightly Testin Test Suit ation:
ightly Testing est Suite @ National
Laboratories

Page 11

= /
MP + TPL Almost Continuous Integration: Co-Development

- T 2.a) Modify & extend
(ity AR) 1.a) Check out APP Local
: _ Working Direct
VC Repository 5.a) Check in e ey
_ (DEV) /‘ . 4 \“:::, 3) BU'Id
Ve ~ 1.b) Check out 4 Na-””
APP-owned TPL UIPL (Lol < 2.b) Modify & extend
VC Repository 5.b) Check in Working Directory
(Dev-) < L (Dev- and Dev) <
. J
1.c) Check out
APP Pre-Checkin) , » APP Pre-Checkin [+ 2.¢) Modify & extend
Test Suite 5C) Check in Test Suite
Working Directory - - --- 4.a) Run test suite
N
Main TPL 1.d) Check out (and merge)
VC Repository J 5.d) Check in
(Dev) h
Y
.-~ 4.b) Run test suite
TPL Pre-Checkin 1.€) Check out > TPEI_Pfe-gheCkin o)
Test Suite est Suite
Y Working Directory
5.e) Check in 1 2.d) Modify & extend

* Pre-checkin test suites for APP and TPL are both run before checkin

« Simultaneous checks into APP-owned TPL Dev- and Main TPL Dev VC Repositories!
— Changes in APP-owned TPL VC Dev- Repos get back into Main TPL VC Dev Repos!

rayc i1c

= '
} APP + TPL Almost Continuous Integration: Releases

TPL APP Y+1 release

v
Q
g
v

TPL Head (Dev) o

v

APP Y+1 & TPL APP Y+1 release

v

APP Head (Dev)

v

Nightly Testing: APP Dev + TPL Dev (pre-checkin tests only, TPL Dev- checkin)
Nightly Testing: APP Dev + TPL Dev- (complete test suites)
Supported with asynchronous continuous integration testing of APP Dev + TPL Dev

» All changes are tested in small batches

« Low probability of experiencing a regression between major releases

» Less computing resources for detailed nightly testing (only one TPL version)
 All tested regressions are flagged in less than 24 hours

» Allows code to flow freely between the APP and TPL

» Supports rapid development of new capabilities from top to bottom

 All code checked out by APP Dev developers has passed pre-checkin build/test
* More complex processes (i.e. requires some tools?)

* APP Dev developers spend more time spent recompiling TPL code

« Recommended for projects requiring high levels of integration & collaboration!
Page 13 S LADOIALONES

g
Maintenance of APP + TPL Integration

APP + TPL Monitor:

APP Dev + TpgrDe" Build/Test @ — Member of the APP development team
APP Dev + TPL Dev-/Release Build/Test _ — Has good familiarity with the TPLs
Hard APP — Performs first-round triage (APP or TPL?)
All failures - Issues — Forwards issues to APP or TPL Reps

Issues APP — Ultimate responsibility to make sure issues
Representatives are resolved

APP Representative:
— Member of the APP development team
— Second-round triage of APP issues
g — Forwards hard APP issues to APP
developers
TPL Representative:
— Member of the TPL development team
— Has some familiarity with the APPs
Hard TPL #1 Hard TPL #2 — Second-round triage for TPL issues
| lesves | feeves — Forwards hard TPL issues to TPL
developers
General principles:

— Roles of authority and accountability
(Ordained by management)

— At least two people serve in each role

— Rotate people in roles Sandia
@ National
Laboratories

APP + TPL
Monitors

TPL #1
Issues

TPL #2
Representatives

TPL #1
Representatives

TPL #2
Developers

TPL #1
Developers

Page 14

—
Merience with Integration Approaches with Trilinos at SNL

Charon + Trilinos Integration:
— First implemented APP + TPL Release and Dev Daily Integration in 2007
— Maintained daily integration with little effort
— Supporting more ambitious collaborations and integration efforts
— However, has never gone through a full release process under this model
» Alegra + Trilinos Integration:
— Started APP + TPL Release and Dev Daily Integration in 2008
— Maintained daily integration with little effort on multiple platforms
— Upgrade to Trilinos 9.0 was easy and risk free, less overall effort
 SIERRA + Trilinos Integration:
— Started APP + TPL Release and Dev Daily Integration in mid 2008
— Before daily integration:
* SIERRA 4.9 released against Trilinos 7.0 (a 1.5 year old release)
» Upgrade of SIERRA VOTD to Trilinos 8.0 was a “disaster”
— After daily integration:
* SIERRA 4.10 released against Trilinos 9.0 (2 months old) with no issues
* SIERRA 4.11 released against snapshot branch of Trilinos (2 weeks old)
— Currently having lots of problems with broken code in “New” APP code
— APP + TPL Almost Continuous Integration Process currently being developed!

Sandia
National
Laboratories

Page 15

= '
}: Selecting an Integration Model for CS&E Software

« Each of these different integration models will be appropriate for a particular
APP+TPL situation.

* The particular integration model can be switched during the life-cycles of
the APP and TPL depending on several factors:
— How critical is the TPL functionality currently to the APP?
— Are there alternatives to a particular TPL that can duplicate functionality?
— How actively is the TPL being developed?
— Is it critical for the APP to continue to accept new releases of the TPL?
— How active is the collaboration between APP and TPL developers?
— Is the TPL a fundamental part of the infrastructure of the APP?

Sandia
National
Page 16 Laboratories

i

}‘ Conclusions

* Need to integrate a large amount of CS&E software:

— Meshing

— Discretizations

— Solvers

— Adaptivity

— Analysis capabilities
— Visualization

Software Engineering and Software Integration are key bottlenecks for
CS&E to have the fullest impact!

The CS&E R&D community needs to adopt better Lean/Agile software
engineering methods:
— Need a strategy to inject basic software engineering knowledge into CS&E
— These methods must be adapted to the special properties of CS&E

Sandia
National
Laboratories

Page 17

' The End

The End

Sandia
National
Laboratories

Page 18

=
}' Summary of CS&E Software Integration Models

 Nightly building and testing of the development versions of the application
and TPLs:

results in better production capabilities and better research,

brings TPL developers and APP developers closer together allowing for a better
exchange of ideas and concerns,

refocuses TPL developers on customer efforts,
helps drive continued research-quality TPL development, and

reduces barriers for new TPL algorithms to have impact on production
applications.

* Integration Models:
— APP + TPL Release with Punctuated TPL Upgrades

« Little to no testing of APP + TPL Dev in between TPL releases

— APP + TPL Release and Dev Dalily Integration

 Daily Integration testing done for both APP + TPL Release and Dev
» Staggered releases of TPL and APP

— APP + TPL Almost Continuous Integration

Page 19

* APP Dev + TPL Dev developers update both APP-owned and main TPL repositories

* Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL Dev- VC
Repository

* Releases best handled as combined releases of APP and TPL
» TPL Dev- checkins can be dialed back approaching TPL Release and Dev Integration!

Idliuld
l m l National
Laboratories

